Bitus
Multipla decimalia (SI) | |
---|---|
kilobitus | 103 biti (kbit) |
megabitus | 106 biti (Mbit) |
gigabitus | 109 biti (Gbit) |
terabitus | 1012 biti (Tbit) |
petabitus | 1015 biti (Pbit) |
exabitus | 1018 biti (Ebit) |
zettabitus | 1021 biti (Zbit) |
yottabitus | 1024 biti (Ybit) |
Multipla binaria (ISO/IEC) | |
kibibitus | 210 biti (Kibit) |
mebibitus | 220 biti (Mibit) |
gibibitus | 230 biti (Gibit) |
tebibitus | 240 biti (Tebit) |
pebibitus | 250 biti (Pebit) |
exbibitus | 260 biti (Eibit) |
zebibitus | 270 biti (Zibit) |
yobibitus | 280 biti (Yibit) |
Bītus[1][2][3][4][5][6][7][8] (bīnārius dĭgĭtus, verbum amalgamatum[1][9][10]) vel bītum[3] vel bīt[3] (indeclinabile) est singula nota numeri in systemate numerico binario in computationibus electronicis adhibito.
Redactio datorum in discretos bitos primum per tesseras foratas(en)(d) a Basilio Bouchon(fr)(d) et Ioanne Baptista Falcon(fr)(d) inventas anno 1732 explorata est. Eadem excogitatio anno 1804 a Iosepho Maria Jacquard(fr)(d) (per eius “telarium(en)(d)”) perficiebatur, ac postea a Simone Korsakov(en)(d), Carolo Babbage, et Hermanno Hollerith(en)(d) adhibita est. Simili machinatione, formā taeniae foratae(en)(d), primi opifices officinarum IBM usi sunt ad data servanda.
In iis exemplis, foramina et eorum absentia (illic ubi foramen exspectabatur) utramque notam numeri in systemate binario repraesentabant.
Alphabetum Morsianum (1837) primaque instrumenta teletypica(en)(d) (1887) et bitis usa sunt ad notitias mittendas.
Anno 1928 Radulphus Hartley(en)(d) suasit ut logarithmus basi 2 eligeretur mensio informationis.[11] Verbo biti primum Claudius Elwood Shannon anno 1948 in suo commentario disceptatorio “A Mathematical Theory of Communication(en)(d)” usus est.[12][13][14] Ipse originem vocabuli Ioanni Wilder Tukey(en)(d) attribuit, qui die 9 Ianuarii 1947 notam intra Bell Labs divulgandam scripserat ubi verbo bit locutionem Anglicam binary information digit (i.e. ‘nota numeri informationis binariae’) compendii fecit.[15]
Cum ars informatica progrederetur, octobitus(en)(d) vel octetus (i.e. octonio[16] bitorum) factus est numerus minimus bitorum qui in quacumque serie datorum computatralium exsistere possunt, ideo in plerisque architecturis computatralibus octoni biti sunt minima unitas memoriae allocabilis.
In redactione(en)(d) ASCII(en)(d),[17] octonio (septenio + unibitus vacuus) adhibetur ad singulum characterem repraesentandum. In historia computatrorum aliae compages quoque exploratae sunt.[18][19]
In theoria informationis(en)(d), singulus bitus entropiam cuiuscumque fortuitae quantitatis variabilis binariae (seu quae aequali probabilitate uni aut zero tantum congruere potest) mētītur.[20] Eadem etiam est informatio acquisita cum valor variabilis fiat notus.[21][22] In honorem Claudii Elwood Shannon mathematici Michiganiensis, bitus ut unitas informationis etiam shannon appellatur.[23]
Biti indicantur litterā minusculā “b”, quae non confundenda est cum littera “B” capitanea, octonionem bitorum (Anglice byte) indicante.
Greges bitorum minimi in architectura computatrorum adhibiti
recensereBiti | Anglice | Latine | Maximus numerus captus[24] |
---|---|---|---|
1 | single bit, unibit | singulus bitus, unibitus | 1 |
2 | dibit, crumb, quartic digit, quad, semi-nibble, nyp | dibitus, binio (-onis, m.) – sc. “bitorum”, mica[25] | 3 |
3 | tribit, triad, triade | tribitus, ternio (-onis, m.) – sim. | 7 |
4 | nibble, nybble | quadribitus, quaternio (-onis, m.) | 15 |
5 | pentad, pentade | quinio (-onis, m.) | 31 |
6 | hexad, hexade, sextet | senio (sim.) | 63 |
7 | heptad, heptade | septenio | 127 |
8 | byte, octet | octobitus, octonio, octet(t)us, morsus[26] (-ūs, m.) | 255 |
12 | slab | duodenio, syllaba | 4095 |
15 | parcel | quindenio, fascis[27] (-is, m.) | 32765 |
16 | doublet, wyde, chawmp | duplex – sc. “series bitorum” | 65535 |
18 | chomp, chawmp | duodevicenio | 262143 |
32 | quadlet, tetra | quadruplex – sim. | 4294967295 |
64 | octlet, octa | octuplex | 18446744073709551615 |
128 | hexlet, paragraph | sedecuplex, paragraphus | ∼ 3.4028… × 1038 |
2048 | page | pagina | ∼ 3.2317… × 10616 |
Redactio in notas ASCII
recensereIn redactione in notas ASCII, octonio bitorum (septenio + unibitus vacuus) adhibetur ad singulum characterem repraesentandum. Characteres a zerensimo ad tricensimum secundum, una cum charactere centensimo vicensimo septimo, sunt metacharacteres – i.e. invisibiles notae quae peculiares iussūs praescribunt (e.g. de tono emittendo, de versu finiendo, de spatio creando, et cetera).
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
---|---|---|---|---|---|---|---|---|---|
000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | ||
0 | 0000 | NUL0 | DLE16 | SP32 | 0 48 |
@ 64 |
P 80 |
` 96 |
p 112
|
1 | 0001 | SOH1 | DC117 | ! 33 |
1 49 |
A 65 |
Q 81 |
a 97 |
q 113
|
2 | 0010 | STX2 | DC218 | " 34 |
2 50 |
B 66 |
R 82 |
b 98 |
r 114
|
3 | 0011 | ETX3 | DC319 | # 35 |
3 51 |
C 67 |
S 83 |
c 99 |
s 115
|
4 | 0100 | EOT4 | DC420 | $ 36 |
4 52 |
D 68 |
T 84 |
d 100 |
t 116
|
5 | 0101 | ENQ5 | NAK21 | % 37 |
5 53 |
E 69 |
U 85 |
e 101 |
u 117
|
6 | 0110 | ACK6 | SYN22 | & 38 |
6 54 |
F 70 |
V 86 |
f 102 |
v 118
|
7 | 0111 | BEL7 | ETB23 | ' 39 |
7 55 |
G 71 |
W 87 |
g 103 |
w 119
|
8 | 1000 | BS8 | CAN24 | ( 40 |
8 56 |
H 72 |
X 88 |
h 104 |
x 120
|
9 | 1001 | HT9 | EM25 | ) 41 |
9 57 |
I 73 |
Y 89 |
i 105 |
y 121
|
10 | 1010 | LF10 | SUB26 | * 42 |
: 58 |
J 74 |
Z 90 |
j 106 |
z 122
|
11 | 1011 | VT11 | ESC27 | + 43 |
; 59 |
K 75 |
[ 91 |
k 107 |
{ 123
|
12 | 1100 | FF12 | FS28 | , 44 |
<60 | L 76 |
\ 92 |
l 108 |
| 124
|
13 | 1101 | CR13 | GS29 | - 45 |
= 61 |
M 77 |
] 93 |
m 109 |
} 125
|
14 | 1110 | SO14 | RS30 | . 46 |
> 62 |
N 78 |
^ 94 |
n 110 |
~ 126
|
15 | 1111 | SI15 | US31 | / 47 |
? 63 |
O 79 |
_ 95 |
o 111 |
DEL127 |
Notae
recensere- ↑ 1.0 1.1 Vocabula computatralia.
- ↑ Cf. versionem Latinam vocabuli Hispanici bit apud Iosephum Ioannem del Col (2007). Diccionario Auxiliar Español-Latino. Sinu Albo: Institutum Superius Ioannes XXIII. p. 142. ISBN 9789509771345 [PDF].
- ↑ 3.0 3.1 3.2 Cf. versionem Latinam vocabuli Theodisci Bit apud Lucusaltianum, Petrum (2024). Lexicon Latinum Hodiernum Lucusaltianum: Tom. I, A–B (ed. XXIV) [PDF]. Lentiae: Petrus Lucusaltianus. p. 275.
- ↑ Silvia, Krukowska (mense Iulii 2010). "De lingua Latina in interreti adhibenda". Vox Latina 46 (181): 381–398
- ↑ De bitis nummariis(en)(d) (Anglice bitcoins) cf. Kangiser, Paulus (20 Aprilis 2014). De novis nummis interretialibus. . Ephemeris: “… etiam putatur non unus sed grex computatralis hanc pecuniam electronicam creavisse; quid sit ergo bitus nummarius (Anglice bitcoin)?”
- ↑ Perné, Gualterius (6 Decembris 2011). C vocabula computatralia. . Lateinunterricht
- ↑ Silvia, Krukowska (mense Iulii 2017). Łacina jako środek komunikowania treści związanych z osiągnięciami współczesnej myśli technicznej. KUBA. ISBN 978-83-89077-29-5
- ↑ Numen – The Latin Lexicon – Latinitas Recens, p. 16
- ↑ Mackenzie, 1980, p. x.
- ↑ Sed, cave, verbum Anglicum digit haud digitum, sed notam numeri significat.
- ↑ Abramson, 1963.
- ↑ Shannon, Iul. 1948.
- ↑ Shannon, Oct. 1948.
- ↑ Shannon, 1949.
- ↑ Shannon, Iul. 1948: “The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by J. W. Tukey.”
- ↑ Nomen octeti e vocabulo Hispanico octeto videtur oriri, sed fontibus caret. Suffixum -etus non est Latinum: mediaevali Latinitate suffixum -ettus (duplā litterā “t”) raro invenitur (conferatur vallettus), e suffixo classico -ittus ortum (ergo rectius octettus dicendum sit; vide etiam vocabulum Italicum ottetto). Nihilominus puriore Latinitate grex octo rerum octonio (-onis, m.) appellatur.
- ↑ Cf. “.writ encode, encrypt” apud Morgan, Davidem (2013). Lexicon Anglum et Latinum. Paulopolis: Darcy Carvalho. p. 495 [PDF]: “in notas redigere (HELF.)”. Etiam videatur redactus(en) apud Victionarium Anglicum et “redactus” apud Forcellini, Aegidium; Furlanetto, Iosephum red.; Corradini, Franciscum cur.; et Perin, Iosephum cur. (1733-1965). Lexicon Totius Latinitatis. Tom. IVa [PDF]. Bononiae: Arnaldus Forni. p. 39.
- ↑ Buchholz, Iun. 1956, cap. 7, “The Shift Matrix”: “… Most important, from the point of view of editing, will be the ability to handle any characters or digits, from 1 to 6 bits long.
Figure 2 shows the Shift Matrix to be used to convert a 60-bit word, coming from Memory in parallel, into characters, or ‘bytes’ as we have called them, to be sent to the Adder serially. The 60 bits are dumped into magnetic cores on six different levels. Thus, if a 1 comes out of position 9, it appears in all six cores underneath. Pulsing any diagonal line will send the six bits stored along that line to the Adder. The Adder may accept all or only some of the bits.
Assume that it is desired to operate on 4 bit decimal digits, starting at the right. The 0-diagonal is pulsed first, sending out the six bits 0 to 5, of which the Adder accepts only the first four (0–3). Bits 4 and 5 are ignored. Next, the 4 diagonal is pulsed. This sends out bits 4 to 9, of which the last two are again ignored, and so on.
It is just as easy to use all six bits in alphanumeric work, or to handle bytes of only one bit for logical analysis, or to offset the bytes by any number of bits. All this can be done by pulling the appropriate shift diagonals. An analogous matrix arrangement is used to change from serial to parallel operation at the output of the adder. …” - ↑ Buchholz, Iul. 1956, cap. 5, “Input-Output”: “… 60 is a multiple of 1, 2, 3, 4, 5, and 6. Hence bytes of length from 1 to 6 bits can be packed efficiently into a 60-bit word without having to split a byte between one word and the next. If longer bytes were needed, 60 bits would, of course, no longer be ideal. With present applications, 1, 4, and 6 bits are the really important cases.
With 64-bit words, it would often be necessary to make some compromises, such as leaving 4 bits unused in a word when dealing with 6-bit bytes at the input and output. However, the LINK Computer can be equipped to edit out these gaps and to permit handling of bytes which are split between words.” - ↑ Anderson, John B.; Johnnesson, Rolf (2006). Understanding Information Transmission
- ↑ Haykin, Simon (2006). Digital Communications
- ↑ IEEE Standard Letter Symbols for Units of Measurement (SI Customary Inch-Pound Units, and Certain Other Units). Standards.IEEE.org (Technical report). IEEE. 2004. 260.1-2004.
- ↑ "How Many? A Dictionary of Units of Measurement – Units: B"
- ↑ Minimus numerus semper zerus est.
- ↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est (Anglice: crumb). Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
- ↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est (Anglice: bite/byte). Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
- ↑ Haec appellatio a Vicipaediano e lingua indigena in sermonem Latinum conversa est (Anglice: parcel). Extra Vicipaediam huius locutionis testificatio vix inveniri potest.
Bibliographia
recensere- Abramson, Normannus (1963). Information theory and coding. McGraw-Hill
- Buchholz, Guarnierus (11 Iunii 1956). The Link System. IBM. pp. 5–6
- Buchholz, Guarnierus (31 Iulii 1956). Memory Word Length. IBM. p. 2
- Bush, Vannevar (1936). "Instrumental analysis". Bulletin of the American Mathematical Society. 42 (10): 649–669
- Mackenzie, Carolus E. (1980). Coded Character Sets, History and Development. The Systems Programming Series (1 ed.). Addison-Wesley Publishing Company, Inc.. ISBN 978-0-201-14460-4
- Shannon, Claude Elwood (mense Iulii 1948). "A Mathematical Theory of Communication". Bell System Technical Journal 27 (3): 379–423
- Shannon, Claude Elwood (mense Octobris 1948). "A Mathematical Theory of Communication". Bell System Technical Journal 27 (4): 623–666
- Shannon, Claude Elwood; Weaver, Warren (1949). A Mathematical Theory of Communication. University of Illinois Press. ISBN 0-252-72548-4
Nexus interni