Glycolysis
Glycolysis (Graece γλυκύς glykys 'dulcis‘ + λύσις lysis 'dissolutio') est iter metabolicum in matrice cytoplasmatica percursum conversionum biochemicarum celerium a materia propulsoria externa glucoso C
6H
12O
6 ad acidum pyruvicum CH
3COCOO−
+ H+ intergradum ad nullum oxygenium consumentem formationem materiae propulsoriae internae ad usum mitochondriorum et organellarum cytoplasmatis et membranarum cellularium. Fructus secundus ad usum cellulae reactionum redoxidativarum multarum NADH + H+ est.
Cave: notitiae huius paginae nec praescriptiones nec consilia medica sunt. |
Summarium glycolysis |
---|
+ |
Ex una molecula glucosi decem reactionibus biochemicis et duae moleculae acidi pyruvici et duae ATP et duae NADH nascuntur: α-D-glucosum + 2NAD+ + 2ADP + 2Pi ⟹ 2(pyruvatum) + 2NADH + 2ATP + 2H+ + 2H2O |
Varietates, quarum frequentissima et notissima (itaque in hoc loco descripta) est secundum Gustavum Embden et Otto Fritz Meyerhof (Via Embden-Meyerhof), notae sunt.
Quibusdam in cancrorum versio biochemica ab metabolismo mitochondriali ad glycolysem accidere videtur. Inhibitio enim glycolysis sit una diversis strategiis in cancris tractandis.
Glycolysis momentum glycaemiae maius habet.
Significatio et contextus
recensereGlycolysis est pars catabolismi saccharidi in organismo plurimorum animalium. Ita magnus huius reactionum decursus est, ut non modo imminuantur moleculas monosaccharidi glucosi, sed recipiantur alia etiam commutantia antea monosaccharida, per exemplum fructosum. Sub intentione metabolica forti glycolyse celeriter energia prope locum indigentiae permitti possit, per exemplum prope vesiculas neurotransmissorum.[1]
Usus proximus acidi pyruvici ex oxygenii praesentia pendet. Oxygenio praesente oxidatio in cyclo acidi citrici atque cursu phosphorylationis oxidativae ad aquam et dioxidum carbonii latior fit, absente invicem fermentatio (fermentatio homolactica) ad lactatum.
Ad summam, glycolysis a saccharidis nullo spatio interposito et celeriter energiam creat. Pro vita cottidiana equidem ad energiam efficiendum machinationes metabolismi supplentes necesse sunt. Oxygenio autem absente saccharomycetes glycolysem augebunt et consumptio glucosi aucta simul Effectus Pasteur nominatur.
Locus glycolysis
recensereReactiones biochemicae glycolysis in cellula, ibidem in matrice cytoplasmatica fiunt. Praesentia magnesii satis significationem habere videtur, quod dimidiae ( 1, 3, 7, 9, [[#Reactio biochemica 10: Pyruvati kinasis (PK)|10]] [2]) omnium reactionum hoc elemento egent.
Nonnullis protozois organella praecipua, glycosomata nominata, sunt, in quibus enzymi glycolysis inveniuntur. Exemplum protozoi cum glycosomatibus sunt trypanosomatidae, quae trypanosomiasem excitare possunt.
Cursus
recensereSummarium graduum
recensereIn glycolysi ab una molecula glucosi effecto, duae acidi pyruvici fiunt:
D-Glucosum | Acidum pyruvicum | ||||
+ 2 NAD+ + 2 ADP + 2 Pi | 2 | + 2 NADH + 2 H+ + 2 ATP + 2 H2O |
Decem gradus accidunt, quorum primi quinque (reactiones biochemicae 1-5) pars praeparatoria et ultimi quinque gradus (reactiones biochemicae 6-10) pars quaestuosa nominantur.
Pars praeparatoria
Gradus | Substratum | Enzymum | Classis enzymarum | Annotationes | ||
---|---|---|---|---|---|---|
1 | Glucosum | Glc | Hexokinasis | HK | Transferasis | Cofactor: Mg2+, Adenosinum triphosphoricum (ATP) (energia) consumitur |
2 | α-D-Glucoso-6-phosphatum | G6P | Phosphoglucosi isomerasis | PGI | Isomerasis | |
3 | β-D-Fructoso-6-phosphatum | F6P | 6-Phosphofructokinasis | PFK-1 | Transferasis | Cofactor: Mg2+, Adenosinum triphosphoricum (ATP) (energia) consumitur |
4 | β-D-Fructoso-1,6-bisphosphatum | F1,6BP | Aldolasis | ALDO | Lyasis | |
5 | Dihydroxyacetonophosphatum | DHAP | Triosophosphati Isomerasis | TPI | Isomerasis |
Pars quaestuosa
Gradus | Substratum | Enzymum | Classis enzymarum | Annotationes | ||
---|---|---|---|---|---|---|
6 | Glyceraldehydro-3-phosphatum | GADP | Glyceraldehydrophosphati dehydrogenasis | GAPDH | Oxidoreductasis | Nicotinamidum adeninum dinucleotidum (NADH, baiulus hydrogenii) formatur. Additio phosphati phosphorolysis vocatur. |
7 | 1,3-Bisphosphoglyceratum | 1,3BPG | Phosphoglycerati kinasis | PGK | Phosphoglycerati kinasis | Cofactor: Mg2+, Adenosinum triphosphoricum (ATP) (energia) formatur |
8 | 3-Phosphoglyceratum | 3PG | Phosphoglycerati mutasis | PGM, PGAM | Mutasis | |
9 | 2-Phosphoglyceratum | 2PG | Enolasis | ENO | Lyasis | Cofactor: 2 Mg2+, una molecula aquae liberatur |
10 | Phosphoenolpyruvatum | PEP | Pyruvati kinasis | PK | Transferasis | Cofactor: Mg2+, Adenosinum triphosphoricum (ATP) (energia) formatur |
Gradus glycolysis
recensereReactio biochemica 1: Hexokinasis (HK)
recensere1. A glucoso ad glucoso-6-phosphatum
Hac in reactione prima phosphatum additur et in decima demum removebitur. Iste grex phosphati glucosum ex cellulam evadere prohibet, hexokinasis similem hauritorii glucosi laborans. Cofactor est Mg2+. Kation hydrogenii deponitur. Haec reactio consumit energiam. ΔG° = -16,7 kJ/mol. De biochemico Warburg effectus metabolismi maximi in cancro descriptus hac reactione hexokinasis molita est. |
|
Reactio biochemica 2: Phosphoglucosi isomerasis (PGI)
recensere2. A glucoso-6-phosphato ad fructoso-6-phosphatum
Fructosi (cum phosphato) formatio. |
|
Reactio biochemica 3: Phosphofructokinasis (PFK-1)
recensere3. A fructoso-6-phosphato ad fructoso-1,6-bisphosphatum
Cum energia phosphofructokinasis imponit alium phosphatum in moleculam - brevi bipartita ... Hic quoque Mg2+ cofactor est. Iterum kation hydrogenii deponitur. Haec reactio consumit energiam. ΔG° = -14,2 kJ/mol. |
|
Reactio biochemica 4: Aldolasis (ALDO)
recensere4. A fructoso-1,6-bisphosphato ad glyceraldehydro-3-phosphatum et dihydroxyacetonophosphatum
Separatio ex uno pentoso uno ad duos triosos: aldolasis fructosum moleculis duabus phosphati gravidum in partes duas, quaeque unam moleculam phosphati portans, dividit. Solum dihydroxyacetonophosphatum in reactionem proximam (5) ingreditur. Altera substantia, glyceraldehydro-3-phosphatum, reactioni proximae deest, et statim in reactionem sextam (6) transit. |
|
Reactio biochemica 5: Triosophosphati isomerasis (TPI)
recensereReactio biochemica 6: Glyceraldehydrophosphati dehydrogenasis (GAPDH)
recensere6. A glyceraldehydro-3-phosphato ad 1,3-bisphosphoglyceratum
Oxidatio et phosphorylatio (phosphorolysis). |
|
Reactio biochemica 7: Phosphoglycerati kinasis (PGK)
recensere7. A 1,3-bisphosphoglycerato ad 3-phosphoglyceratum
Cofactor: Mg2+ Haec reactio consumit energiam. ΔG° = -18,5 kJ/mol). |
|
Reactio biochemica 8: Phosphoglycerati mutasis (PGM, PGAM)
recensere8. A 3-phosphoglycerato ad 2-phosphoglyceratum |
|
Reactio biochemica 9: Enolasis (ENO)
recensere9. A 2-phosphoglycerato ad phosphoenolpyruvatum
Cofactores: Duo ionta Mg2+, alterum ob causam phosphoglyceratorum conformationis appendicis carboxylici alterum ut socius dehydratationis. |
|
Reactio biochemica 10: Pyruvati kinasis (PK)
recensere10. A phosphoenolpyruvato ad acidum pyruvicum
Cofactor: Mg2+; PK-isoformae L, R, M1, et M2 notae sunt. Haec reactio consumit energiam. ΔG° = -31,4 kJ/mol. |
|
Morbi et aegrotationes cum glycolysi coniunctae
recensereCarcinogenesis et cancer
recensereIntra formationem cancri (carcinogenesis) transformatio cellularum sanarum in cancrum observatur incrementum glycolysis[3]. Quoque detrimentum mitochondriorum cum versio metabolica ad glycolysem disputatum est[4]. Inhibitio ergo glycolysis est una diversis strategiis in cancris tractandis[5].
Significatio carcinogensis
recensereCum glucosi oxidatio (aerobica) cellularum sanarum principalis fons energiae putetur, cancri cellulae autem glycolysem (anaerobicam) praecipue utuntur[6] - etiam in oxygenii praesentia (effectus Warburgiensis[7]). At mutationes programmarum cycli cellularis in carcinogenesi momentum maximum habere putatur. Isoforma M2 enzymi pyruvati kinasis (PKM2) tetramerus tumorigenesem impellere videtur[8].
Nonnulli cancri cum adenoviris oncolyticis incrementum reactionum anapleroticarum ostendunt[9].
Morbi neurodegenerativi
recensereCommutationes itineris glycolysis mature in morbis neurodegenerativis appareant[10].
Notae
recensere- ↑ Jang S., Nelson J. C., Bend E. G., Rodríguez-Laureano L., Tueros F. G., Cartagenova L., Underwood K., Jorgensen E. M., Colón-Ramos D. A. (Apr 2016). "Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function". Neuron 90 (2): 278-91
- ↑ Magnesio omnia kinasium enolasisque egent
- ↑ Shi Y., Liu S., Ahmad S., Gao Q. (2018). "Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy". Curr Top Med Chem: 10.2174/1568026618666180523105234
- ↑ Gonzalez C. D., Alvarez S., Ropolo A., Rosenzvit C., Bagnes M. F., Vaccaro M. I. (2014). "Autophagy, Warburg, and Warburg reverse effects in human cancer". BioMed research international: 2014:926729
- ↑ Sheng H., Tang W. (2016). "Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents". Recent Pat Anticancer Drug Discov 11 (3): 297-308
- ↑ Zhang X., Zhao H., Li Y., Xia D., Yang L., Ma Y., Li H. (2018). "The role of YAP/TAZ activity in cancer metabolic reprogramming". Mol Cancer 17 (1): 134
- ↑ Warburg O (1956). "On respiratory impairment in cancer cells". Science 124 (3215): 269-70
- ↑ Wong N., Ojo D., Yan J., Tang D. (2015). "PKM2 contributes to cancer metabolism". Cancer Lett 356 (2 Pt A): 184-91
- ↑ Dyer A., Schoeps B., Frost S., Jakeman P., Scott E. M., Freedman J., Jacobus E. J., Seymour L. W. (2019). "Antagonism of Glycolysis and Reductive Carboxylation of Glutamine Potentiates Activity of Oncolytic Adenoviruses in Cancer Cells". Cancer research 79 (2): 331-45
- ↑ Bell S. M., Burgess T., Lee J., Blackburn D. J., Allen S. P., Mortiboys H. (Nov 2020). "Peripheral Glycolysis in Neurodegenerative Diseases". International journal of molecular sciences 21 (23): 8924doi:10.3390/ijms21238924
Nexus interni
Plura legere si cupis
recensere- Sigurd Lenzen, "A Fresh View of Glycolysis and Glucokinase Regulation: History and Current Status", Journal of Biological Chemistry, 2014ː 12189-12194
- Marks: Basic Medical Biochemistry, Wolters Kluwer & Lippincott, Williams and Williams (sexta editioː 2023)