Numerus transcendens
Numerus transcendens vel transcendentalis[1] est numerus realis vel complexus qui algebraicus non est.
Numeri Elementarii |
---|
Naturales {0,1,2,3,...} sive {1,2,3,...}
Integri {...,-2,-1,0,+1,+2,...} Complexi ℂ |
Variae radices |
Sit numerus transcendens. Tunc nullus est et nulli sunt , ut sit.
Confirmatum est certos numeros transcendentes esse possunt per argumenta anno millesimo octigentesimo quadragesimo quarto ab Iosepho Liouville facta, qui genus numerorum transcendentum (Liouville numeri) construxit; inter his Liouville constans est:
Exempla:
- Numeri π et e et omnes numeri cum eis multiplicati sunt transcendentes (ad demonstrationem videndam).
Functio transcendentalis est functio quae non est algebraica; functio algebraica est polynomium vel ratio polynomiorum vel alia functio ex potestatibus rationalibus facta. Functiones exponentialis, logarithmetica, trigonometricae, hyperbolicae et gamma sunt exempla. Si est functio algebraica, et x est numerus algebraicus, tunc valor est numerus algebraicus; si x est numerus transcendentalis, f(x) potest etiam transcendentalis esse. Attamen si est functio transcendentalis, potest numerus transcendentalis vel numerus algebraicus esse: sin(π) = 1 (x est numerus transcendentalis, y est numerus algebraicus), et sin(1) ≈ .8414709848 (x est numerus algebraicus, y est numerus transcendentalis). Omnes numeri transcendentes sunt irrationales.