Numerus quaternus
Numeri Elementarii |
---|
Naturales {0,1,2,3,...} sive {1,2,3,...}
Integri {...,-2,-1,0,+1,+2,...} Complexi ℂ |
Variae radices |
Quaterni, sive quaterniones (f.) sunt numeri, similes numeris complexis, sed quorum multiplicatio non commutativa est -- hoc est, si a et b quaterni sunt, deinde . Hoc systema a Gulielmo Hamilton, mathematico Hibernio, anno 1843 inventum est.[1] Eorum signum usitatum est , e nomine Hamilton.
Omnis numerus quaternus est a + bi + cj + dk, ubi a, b, c, d numeri reales sunt, et i, j, k sunt nova elementa. Secundum definitionem, , et , et 1 est idemfactor. Si a, b sunt numeri reales et l, m sunt elementa e copia {1, i, j, k}, multiplicatio (al)(bm) = (ab)(lm).[2]
Additio numerorum quaternorum eadem est additioni numerorum reales, et est commutativa (hoc est, A + B = B + A). Hi numeri sunt ergo anellus cum divisione, sed non sunt corpus.
Si septem elementa nova adiungimus ad numeros reales, habebimus numeros octonos.
Nexus externi
recensere- Verbum "quaterniones" hic invenitur: Opera Iacobi Bernoulli.
Notae
recensereBibliographia
recensereBirkhoff, Garrett, et Saunders MacLane. 1965 A Survey of Modern Algebra, editio tertia. Novo Eboraco: Macmillan.
Boyer, Carl B. 1968 A History of Mathematics. Novo Eboraco: Wiley.