Numerus quaternus

numeri, similes numeris complexis, sed quorum multiplicatio non commutativa est
Systemata Numerica Mathematicae
Numeri Elementarii

Naturales {0,1,2,3,...} sive {1,2,3,...}

Integri {...,-2,-1,0,+1,+2,...}

Rationales
Reales

Complexi

Quaterni
Octoni
Infinitas

Variae radices

Quaterni, sive quaterniones (f.) sunt numeri, similes numeris complexis, sed quorum multiplicatio non commutativa est -- hoc est, si a et b quaterni sunt, deinde . Hoc systema a Gulielmo Hamilton, mathematico Hibernio, anno 1843 inventum est.[1] Eorum signum usitatum est , e nomine Hamilton.

Signum in ponte Broom, Eblanae, Hibernia. Dicit: Hic ambulans, die 16 octobris 1843, Sir William Rowan Hamilton, ingenio tactus quasi fulgore, legem fundamentam multiplicationis numerorum quaternorum invenit, , quam legem in lapidem pontis inscripsit.

Omnis numerus quaternus est a + bi + cj + dk, ubi a, b, c, d numeri reales sunt, et i, j, k sunt nova elementa. Secundum definitionem, , et , et 1 est idemfactor. Si a, b sunt numeri reales et l, m sunt elementa e copia {1, i, j, k}, multiplicatio (al)(bm) = (ab)(lm).[2]

Additio numerorum quaternorum eadem est additioni numerorum reales, et est commutativa (hoc est, A + B = B + A). Hi numeri sunt ergo anellus cum divisione, sed non sunt corpus.

Si septem elementa nova adiungimus ad numeros reales, habebimus numeros octonos.

Nexus externi

recensere
  1. Boyer, p. 624-626
  2. Birkhoff et MacLane p. 222

Bibliographia

recensere

Birkhoff, Garrett, et Saunders MacLane. 1965 A Survey of Modern Algebra, editio tertia. Novo Eboraco: Macmillan.

Boyer, Carl B. 1968 A History of Mathematics. Novo Eboraco: Wiley.