Relatio, in mathematica, rectius relatio binaria, est copia parium ordinatorum. Est notio magis generalis quam functio: relatio est quaelibet copia parium ordinatorum, sed functio est copia F ubi si , tunc . Hoc est, in functio non sunt duo paria quorum prima elementa sunt eadem sed seconda elementa differunt.

Par ordinatum (h, f)

Dominium relationis R est copia omnium rerum quae prima elementa parium sunt. Codominium est copia omnium rerum quae seconda elementa sunt. Exempli causa, si R = {(h, f): h est homo, f est felis et animal dilectum hominis h}, dominium R est {omnes homines qui feles habent} et codominium est {omnes feles qui sunt animalia dilecta}. In mathematica dominium et codominium saepe sunt copia numerorum, ut numeri reales aut integri. Possumus dicere , hoc est "R est relatio e copia D in copiam C."

Si R est relatio, et par (a, b) est in R, possumus dicere a R b.

Relatio R reflexiva dicitur si a R a, pro omnibus elementa a. Relatio est symmetrica si a R b implicat b R a. Relatio est transitiva si a R b et b R c implicat a R c.

Exempli:

Sit dominium et codominium copia numerorum realium.

  • Haec est relatio reflexiva, symmetrica, transitiva.
  • Haec est transitiva, sed nec reflexiva nec symmetrica.
  • , hoc est a metitur b vel a est factor b. Est relatio reflexiva et transitiva, sed non est symmetrica.

Relatio aequivalentiae est relatio reflexiva, symmetrica, transitiva.


BibliographiaRecensere

  • Mendelson, Elliott. Number Systems and the Foundations of Analysis. Novi Eboraci: Academic Press, 1973.
  Haec stipula ad mathematicam spectat. Amplifica, si potes!