Lex Crameri est theorema algebrae linearis , quod systema aequationum linearium per determinantes , a Gabriele Cramero (1704-1752) nominata.
Hanc paginam intra 3 menses augere oportet.
Cuique paginae opus est non carere: 1. lemmate paginae nomine congruente; 2. textu, qui rem definit notabilitatemque eius exprimit; 3. fonte externo certo; 4. nexibus internis ex hac pagina et ad hanc paginam ducentibus.
Lex haud in computando est utile, ergo rare aequationibus multis solvendis adhibetur. Tamen, algebrae theoriae importat, ut modum systematis solvendi explicate definit.
Lex Crameri in solvendo matricem 2×2 adhibetur, hac formula applicata:
Datum:
a
x
+
b
y
=
e
{\displaystyle ax+by=e\,}
et
c
x
+
d
y
=
f
{\displaystyle cx+dy=f\,}
,
quae in forma matricis:
(
a
b
c
d
)
(
x
y
)
=
(
e
f
)
{\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}{\begin{pmatrix}x\\y\end{pmatrix}}={\begin{pmatrix}e\\f\end{pmatrix}}}
x et y possunt inveniri lege Crameri:
x
=
|
e
b
f
d
|
|
a
b
c
d
|
=
e
d
−
b
f
a
d
−
b
c
{\displaystyle x={\frac {\begin{vmatrix}e&b\\f&d\end{vmatrix}}{\begin{vmatrix}a&b\\c&d\end{vmatrix}}}={ed-bf \over ad-bc}}
et
y
=
|
a
e
c
f
|
|
a
b
c
d
|
=
a
f
−
e
c
a
d
−
b
c
{\displaystyle y={\frac {\begin{vmatrix}a&e\\c&f\end{vmatrix}}{\begin{vmatrix}a&b\\c&d\end{vmatrix}}}={af-ec \over ad-bc}}
Lex matrici 3×3 est similis:
Datum
a
x
+
b
y
+
c
z
=
j
{\displaystyle ax+by+cz=j\,}
,
d
x
+
e
y
+
f
z
=
k
{\displaystyle dx+ey+fz=k\,}
, et
g
x
+
h
y
+
i
z
=
l
{\displaystyle gx+hy+iz=l\,}
,
quae in forma matricis:
(
a
b
c
d
e
f
g
h
i
)
(
x
y
z
)
=
(
j
k
l
)
{\displaystyle {\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}}{\begin{pmatrix}x\\y\\z\end{pmatrix}}={\begin{pmatrix}j\\k\\l\end{pmatrix}}}
x, y, et z possunt inveniri:
x
=
|
j
b
c
k
e
f
l
h
i
|
|
a
b
c
d
e
f
g
h
i
|
{\displaystyle x={\frac {\begin{vmatrix}j&b&c\\k&e&f\\l&h&i\end{vmatrix}}{\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}}}}
,
y
=
|
a
j
c
d
k
f
g
l
i
|
|
a
b
c
d
e
f
g
h
i
|
{\displaystyle y={\frac {\begin{vmatrix}a&j&c\\d&k&f\\g&l&i\end{vmatrix}}{\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}}}}
, et
z
=
|
a
b
j
d
e
k
g
h
l
|
|
a
b
c
d
e
f
g
h
i
|
{\displaystyle z={\frac {\begin{vmatrix}a&b&j\\d&e&k\\g&h&l\end{vmatrix}}{\begin{vmatrix}a&b&c\\d&e&f\\g&h&i\end{vmatrix}}}}
Nexus interni