Quantum redactiones paginae "Physica statistica" differant

 
Probabilitas macrostatui cuidam k est <math>\;\rho = \frac {e^{-\beta E_k}}{Z} </math>, ubi constans normalizationis (appellatus functio partitionis) <math>Z = \sum_{k} e^{-\beta E_k}</math>, <math>E_k</math> est energia tota microstatus k, et <math>\beta = {1 \over k_B T}</math>.
 
Partitionis functione utentes possumus calculare omnes quantitates thermodynamicas per [[derivativum|derivativa]] huius functionis, sic ut tabula infera monstrat.
 
{| class="wikitable"
|-
! style="text-align: left" | [[Hermannus Helmholtz|Helmholtz]] [[Energia libera canonica|Energia libera Helmholtziana]]:
| bgcolor="white" | <math>F = - {\ln Z\over \beta}</math>
|-
! style="text-align: left" | [[Energia interna]]:
| bgcolor="white" | <math>E = -\left( \frac{\partial\ln Z}{\partial\beta} \right)_{N,V}</math>
|-
! style="text-align: left" | [[Pressio]]:
| bgcolor="white" | <math>P = -\left({\partial F\over \partial V}\right)_{N,T}= {1\over \beta} \left( \frac{\partial \ln Z}{\partial V} \right)_{N,T}</math>
|-
! style="text-align: left" | [[Entropia]]:
| bgcolor="white" | <math>S = k (\ln Z + \beta E)\,</math>
|-
! style="text-align: left" | [[Energia libera Gibbsiana]]:
| bgcolor="white" | <math>G = F+PV=-{\ln Z\over \beta} + {V\over \beta} \left( \frac{\partial \ln Z}{\partial V}\right)_{N,T}</math>
|-
! style="text-align: left" | [[Enthalpia]]:
| bgcolor="white" | <math>H = E + PV\,</math>
|-
! style="text-align: left" | [[Calor specificus]] volumine constante:
| bgcolor="white" | <math>C_V = \left( \frac{\partial E}{\partial T} \right)_{N,V}</math>
|-
! style="text-align: left" | Calor specificus pressione constante:
| bgcolor="white" | <math>C_P = \left( \frac{\partial H}{\partial T} \right)_{N,P}</math>
|-
! style="text-align: left" | [[Potentiale chemicum]]:
| bgcolor="white" | <math>\mu_i = -{1\over \beta} \left( \frac{\partial \ln Z}{\partial N_i} \right)_{T,V,N}</math>
|-
|}
 
===Collectio macrocanonica===
22 224

recensiones