Quantum redactiones paginae "Polynomium" differant

Content deleted Content added
m movit Polyonymon ad Polynomium: vid disp
No edit summary
Linea 1:
[[Fasciculus:Polynomialdeg5.svg|thumb|[[Graphum]] Polyonymi gradus quinti]]
'''PolyonymonPolynonium'''<ref>Fons huius nominis in ''Lateinisch-deutsches Handwörterbuch: polyonymos. Georges: Lateinisch-Deutsch / Deutsch-Lateinisch, S. 43404 (vgl. Georges-LDHW Bd. 2, S. 1764)'' inventus : Prisc. 15, 38. et Consent. 341, 18 K. </ref> in [[mathematica]] omnis [[functio]] formae <br> <math> f(x)= \sum_{i=0}^n a_i \cdot x^{i}=a_n \cdot x^n+a_{n-1}\cdot x^{n-1}+\dots+a_1 \cdot x+a_0,</math> </br>
(ubi est <math>n \in \mathbb N, a_i \in \mathbb R</math>) appellatur. <math> n </math> appellatur gradus polyonymipolynomii.
 
==Proprietates==
 
*Omnis functio polyonymipolynomialis [[continuitas|continua]] est et differentiabilis.
*[[Functio differentiabilis|Derivatio]] polyonymipolynomii est (secundum regulam [[additio|summae]] et [[factor|factoris]] [[functio differentiabilis|functionis differentiabilis]]):
 
<math> f\!\,'(x)= \left( \sum_{i=0}^n a_i \cdot x^{i} \right)^{\!\,'}= \sum_{i=1}^{n-1} a_i \cdot i \cdot x^{i-1}=a_n \cdot n \cdot x^{n-1} + a_{n-1}\cdot (n-1) \cdot x^{n-2}+\dots+a_1 </math>
Linea 17:
 
'''Exempla'''
* PolyonymonPolynomium <math> f(x)= 17x^4-7x^2-3 </math> est symmetricum ad axem verticalem, quae aequatione <math>x=0 </math> datur.
*PolyonymonPolynomium <math> f(x)= 8x^5-7x </math> est symmetricum ad punctum originis (0/,0).
 
==Notae==