Quantum redactiones paginae "Tensor (mathematica)" differant

crib some bibliography from other articles
(flesh out just a bit, as this is now one of the 10,000 Paginae)
(crib some bibliography from other articles)
{{L}}
[[Fasciculus:Components stress tensor.svg|thumb|Tensor ordinis alteris cuius basis est (e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>)]]
Tensor est objectus [[geometria|geometricus]] qui combinet [[vector (mathematica)|vectores]], constantes, et alteros tensores in modo [[aequatio linearis|lineare]]. Notio plus generalis est quam vector vel matrix. MultiplicatioTensor scalarisindices vectorum (productum puncto notatum)habet, quae scalarem e duobus vel pluribus vectoribus facit,qui estsimiles tensorsunt simplicissimus[[dimensio|dimensionibus]].
 
Multiplicatio scalaris vectorum (productum puncto notatum), quae scalarem e duobus vel pluribus vectoribus facit, est tensor simplicissimus.
 
Tensores sunt magni momenti in [[physica]].
 
== Bibliographia ==
* Donald Danielson. ''Vectors and Tensors in Engineering and Physics.'' Novi Eboraci: Perseus, 2003.
* Ferrante Neri, ''Linear Algebra for Computational Sciences and Engineering.'' Helvetia: Springer, 2016.
* Bernard Schutz. ''Geometrical Methods of Mathematical Physics.'' Cantabridgiae: 1980.
* C. E. Weatherburn, ''Elementary Vector Analysis, with Applications to Geometry and Physics.'' Londini: G. Bell & sons, 1935.
 
== Nexus externi ==
{{CommuniaCat|Tensor|tensorem}}
* [http://mathworld.wolfram.com/Tensor.html Tensor] apud MathWorld
 
{{math-stipula}}
 
[[Categoria:Algebra linearis]]
[[Categoria:Analysis]]
{{Myrias|mathematicaMathematica}}
10 075

recensiones