Quantum redactiones paginae "Geometria Euclidea" differant

Content deleted Content added
mNo edit summary
Linea 1:
[[Fasciculus:Sanzio_01_Euclid.jpg|thumb|Pars [[Raphael Sanctius Urbinas|Raphaëlis]] ''[[Schola Atheniensis (Raphael)|Scholae Atheniensis]]'', in quo depingitur mathematicus Graecus, fortasse [[Euclides]] aut [[Archimedes]], qui [[circinus|circino]] constructionem geometricam facit]]
'''Geometria Euclidea''' est systema [[mathematica|mathematicum]], quod [[Euclides]] [[Alexandria|Alexandrinus]] in libro suo de [[geometria]], [[Elementa (Euclides)|Elementis]], descripsit. Modus Euclidis consistit in ponendis axiomatibus, ex quibus multa [[theorema]]ta concludit. Conclusiones Euclidis, quamquam partim a prioribus mathematicis expositae, ab Euclide primum in uno amplo systemate logico ordinatae sunt. ''Elementa'' incipiunt geometriâ [[planum|plani]], quae systema axiomatica, inductio in [[demonstratio mathematica|demonstrationes mathematicas]], etiamnunc in [[schola|ludis]] docetur. Deinde procedit ad [[geometria solida|geometriam solidam]] trium [[dimensio (geometria)|dimensionum]]num. Magna pars ''Elementorum'' continet propositiones, lingua geometrica explicatas, quae hodie partes [[algebra]]e et [[theoria numerorum|theoriae numerorum]] habentur.
<!--
For more than two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of [[Albertus Einstein|Albert Einstein]]'s theory of [[Relativitas generalis|general relativity]] is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only where the [[Gravitas (physica)|gravitational field]] is weak.<ref>Misner, Thorne, and Wheeler (1973), p.&nbsp;47</ref>