Quantum redactiones paginae "Productum interius" differant

bibliographiam addidi ut sit stipula vera
m (Non stipula (10K))
(bibliographiam addidi ut sit stipula vera)
{{Non stipula}}{{L}}
[[Fasciculus:Scalar-product.svg|thumb|Productum interius duorum vectorum]]
'''Productum interius''' seu '''productum scalare''' seu '''puncti productum''' est productum duorum [[vector]]um <math> \vec{a} </math> et <math> \vec{b} </math> ubi singulus [[numerus scalaris]] producitur, quid datur formula
ubi * denotat [[coniugatio numeri complexi|coniugationem complexam]] et † denotat simultaneam coniugationem et [[matrix (mathematica)|transpositionem]]. Hac definitione maxime [[numerus complexus|numeris complexis]] accomodata effecit ut semper scribi possit valore scalari reali
:<math>\vec{a}\cdot \vec{a} = \left\|\vec{a}\right\|^2</math>
 
== Bibliographia ==
*Anton, Howard. [[1977]]. ''Elementary Linear Algebra.'' Novi Eboraci: John Wiley &amp; Sons.
*Birkhoff, Garrett, et Saunders MacLane. [[1965]]. ''A Survey of Modern Algebra.'' Editio tertia. Novi Eboraci: Macmillan.
*Bourbaki, Nicolas Bourbaki. [[2007]]. ''Algèbre, chapitres 1 à 3'' Éléments de mathematique. Berolini: Springer Verlag.
*Gowers, Timothy, ed. [[2008]]. ''The Princeton Companion to Mathematics.'' Princeton: Princeton University Press. ISBN 978-0-691-11880-2.
*Hart, Roger. [[2011]]. ''The Chinese Roots of Linear Algebra.'' Baltimore: Johns Hopkins University Press. ISBN 978-0-8018-9755-9.
*Heffron, Jim. [[2011]]. ''Linear Algebra.'' Liber ab auctore editus, [http://joshua.smcvt.edu/linearalgebra/ in rete]
 
[[Categoria:Algebra linearis]]
9 999

recensiones