Quantum redactiones paginae "Mechanica Newtoniana" differant

m
+Exemplum ex en + stultitias delevimus (1K, 10K)
(Marcelio Martirosiano 4-----asis desnis; tai ::: (m1-m2)*V^n+1::{{ n+1=|n-1+n+1|=2n}}tada: n+1=2n; pertvarkuome: 4 ( qvatrum) desnis gauname:{{(m1-m2)*V^2n}}== 4-asis desnis::|||||||||;;;(m1-m2)*V^2n;;;;||||||||)
m (+Exemplum ex en + stultitias delevimus (1K, 10K))
[[Fasciculus:Apollo 15 launch.jpg|thumb|[[Rucheta]]e quae ad [[spatium]] contendunt fieri possunt per usum [[leges motus Newtoni|legum Newtonianarum]].]]
[[Fasciculus:Pendulum animation.gif|thumb|[[Pendulum]] cuius positio, [[velocitas]], et [[acceleratio]] secundum mechanicae Newtonianae legem monstrantur.]]
[[Fasciculus:Theory of impetus.svg|thumb|[[Theoria impetus]] stationum trium secundum [[Albertus de Saxonia|Albertum de Saxonia]].]]
'''Mechanica Newtoniana''' [[leges motus Newtoni]] eorumque applicationes ad [[scientia (ratio)|scientiam]] [[physica]]m antequam theoria [[mechanica quantica|mechanicae quanticae]] complectitur. Mechanica Newtoniana est formulatio particularis mechanicae classicae ad motionem particularum in spatio [[Euclides|Euclidiano]] trium dimensionum.
 
== Formae mechanicae Newtoniana ==
Mechanicae classicae formulationes sunt tres:
* [[Leges Newtoni|Mechanica Newtoniana]] per se<ref>[http://cudl.lib.cam.ac.uk/view/PR-ADV-B-00039-00001/46 Liber ''Philosophiae naturalis principia mathematica'' de legibus motus, editio Newtoni ipsius]</ref>
*[[Martirosianas Marcelius Mechanika 4qvatrum
* [[Leges Newtoni|Mechanica Newtoniana]] per se
* [[Aequationes Lagrangi|Mechanica Lagragi]] ab aequationibus Lagrangi derivata ex minimae actionis principio
* [[Formalismus Hamiltoni|Mechanica Hamiltoni]] ab aequationibus Lagrangi derivatus via Legendri transmationis.
Pars physica Newtoniana quoque est:
* [[Theoria gravitatis Newtoniana]]
* Mechanika Martirosiana M.S ==========================Pirmasis Martirosiano Marcelio desnis: -----------||||||||| IINERCIJA |||||||| kūnas jūdejimo metų yra nepriklausomas, išories veikimas
 
== Notiones fundamentales mechanicae Newtonianae ==
reagiruojia , tačau laiko savo pirmini padieti,ir vygduomas. LNERCIJA YRA antrinis reiškinys, objektivinis Lnercija imanoma minimum du kunui saveikaujant. Savaime ne., Inercija tai,---- dvi kūnų jūdejimo kripties priešybes.,================================================================================================================================================================
 
pagal laipsniais yra lygus,. Matematzuojant būtų šitaip: [ MV=M1V1; ] pertvarkuome ir gauname taip: m1^v1=m2^V2, [[v^1+V^2+V^3;;;;;;;V^n-1,V^n] m1^ V^n=m2^V^n; m1^V^n- m2^vn=0 (m1-m2)V^n=0; [n=1,2,3,4]
 
tolio mases ir grečių sandauga sukelia jega ; tai antrinis; ir atsirandantis; dabar rašisime [ F1=F2 ] {{F1=F2 mv yra constantasas|(m1-m2)V^n=o MARCELIO mencanikos 1-sis desnis;=}}<nowiki> mv }} yra conctantas; </nowiki>[[V^n=nV]]
 
== Notiones fundamentales mechanicae Newtonianae ==
Sunt multae notiones quae sunt particulares ad mechanicam Newtonianam:
{{div col|3}}
{{div col end}}
 
== Notae ==
==Bibliographia=
<div class="references-small"><references /></div>
*Marcelius Martirosianas[[2003-03-11]] ''Kaip Aš Suprantu Bomechanika''L I E T U V O S R E S P U B L I K A
 
*Marcelius Martirosianas[[2009m]] ''Matematine Logika ir sanprotavimo analizes logikuoje V I L N I U S
==Bibliographia==
*Alonso, M., et J. Finn. [[1992]]. ''Fundamental University Physics.'' Addison-Wesley.
*[[Ricardus Feynman|Feynman, Richard]]. [[1999]]. ''The Feynman Lectures on Physics.'' Perseus Publishing. ISBN 0738200921.
89 007

recensiones