26 052
recensiones
m (Lesgles movit paginam Factoratio ad In factores resolutio: locutio Gauss) |
mNo edit summary |
||
==In factores resolutio polynomiorum==
[[Polynomium]] omne potest in factoribus resolvi (super [[Corpus (mathematica)|corporem]] [[numerus complexus|numerorum complexorum]]). In casu polynomii unius variabilis, pergimus in factores lineares; hoc est [[theorema fundamentale algebrae]]. Exempli gratia:
<math> x^3 + 4x^2 - 52x + 80 = (x + 10) \cdot (x - 2) \cdot (x - 4) </math>
|