Quantum redactiones paginae "Theorema Pythagorae" differant

flesh out a bit (1000 pages)
m (r2.6.5) (automaton addit: nn:Den pythagoreiske læresetninga)
(flesh out a bit (1000 pages))
{{L}}
[[Fasciculus:Pythagoras-2a.gif|thumb|Commotus geometricus approbatio theoremae Pythagorae]]
In [[Geometria Euclideana]], '''[[theorema]] Pythagorae'''<ref>[http://books.google.de/books?id=_QoAAAAAYAAJ&pg=PA238&lpg=PA238&dq=Theorema+Pythagorae&source=web&ots=L9e6QdC7wC&sig=my9VpJhhdHtLed-p6QoA29SdtO0&hl=de Lamberti Bos ellipses Graecae]</ref> vel '''sententia Pythagorae'''<ref>[http://www.tertullian.org/articles/evans_res/evans_res_03latin.htm Q. SEPTIMII FLORENTIS TERTULLIANI DE RESURRECTIONE CARNIS LIBER]</ref> dicit [[triangulum|trianguli]] recti hypothenusam quadratam aequalem esse summae aliorum laterum quadratorum.
 
Enuntiatum theoremae est: in triangulum ABC rectum in B quod hypothenusa est AC, habemus AB² + BC² = AC².
 
Generaliter, si ''u'' et ''v'' duo orthogoni vectores[[vector]]es in [[spatium hilbertianum|spatio hilbertiano]] sunt, tunc <math>\left\Vert u\right\Vert^2 + \left\Vert v\right\Vert^2 = \left\Vert u+v\right\Vert^2</math>.
 
Aliud theorema generalius est [[Theorema Ultimum Fermatianum]] in [[theoria numerorum]], quod dicit [[aequatio]]nem <math>a^n + b^n = c^n</math> nullam solutionem habet, cuius valores ''a, b, c'' [[numerus integer|integri]] sunt, si n est integer et n > 2.
 
== Nota ==
10 292

recensiones