Quantum redactiones paginae "Numerus triangularis" differant

fons nominis
(fons nominis)
|}
 
'''Numerus triangularis''' <ref>[http://books.google.de/books?id=Hqw44qILcMoC&pg=PA191&lpg=PA191&dq=numeri+triangulares&source=bl&ots=rbUk-20ME4&sig=H9GTws1MPIQI-Yr8XRK8TKvJgqo&hl=de&ei=JEg5TbyHKoPFswbTw9XzBg&sa=X&oi=book_result&ct=result&resnum=6&ved=0CDsQ6AEwBQ#v=onepage&q=numeri%20triangulares&f=false Sämtliche Schriften und Briefe, Band 3 Von Gottfried Wilhelm Leibniz] [[Godefridus Guilielmus Leibnitius]] de numeribus triangularibus.</ref> seu '''Numerus trigonalis'''<ref>[http://books.google.de/books?id=8LAY0Wjz7HoC&pg=PA89&lpg=PA89&dq=triangulum+harmonicum&source=bl&ots=GPNUPtJWWI&sig=TUmVldhH1_UYlVm9_h1fbAKO71A&hl=de&ei=Sfw3TcejLYiW8QOY3PXnCA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBsQ6AEwAQ#v=onepage&q=triangulum%20harmonicum&f=false Analysis 1 Von Wolfgang Walter] {{ling|Germanice}}
</ref> est [[numerus naturalis]] qui a punctis in [[triangulum|triangulo]] positis fieri potest. Omnes scribi possunt quasi summa 1 + 2 + 3 + ... + '''''n''''', ubi '''''n''''' est numerus quiquam naturalis. Ergo, primi numeri triangularii sunt ''&nbsp;=&nbsp;1,&nbsp;2,&nbsp;3...'' est
:[[I|1]], [[III|3]], [[VI|6]], [[X|10]], [[XV|15]], [[XXI|21]], [[XXVIII|28]], [[XXXVI|36]], [[XVL|45]], [[LV|55]], ...
23 781

recensiones