Quantum redactiones paginae "Numerus triangularis" differant

Summarium vacuum
[[Fasciculus:Triangular number 10 as sum of gnomons.svg|thumb|200px|left|Numeri trigonales in [[triangulum|triangulo]]: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10.]]
{| border="1" align="right" cellpadding="8" style="margin-left: 1em"
|1
|}
 
'''Numerus triangularis''' seu '''Numerus trigonalis'''<ref>[http://books.google.de/books?id=8LAY0Wjz7HoC&pg=PA89&lpg=PA89&dq=triangulum+harmonicum&source=bl&ots=GPNUPtJWWI&sig=TUmVldhH1_UYlVm9_h1fbAKO71A&hl=de&ei=Sfw3TcejLYiW8QOY3PXnCA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBsQ6AEwAQ#v=onepage&q=triangulum%20harmonicum&f=false Analysis 1 Von Wolfgang Walter] {{ling|Germanice}}
'''Numerus triangularis'''</ref> est [[numerus naturalis]] qui a punctis in [[triangulum|triangulo]] positis fieri potest. Omnes scribi possunt quasi summa 1 + 2 + 3 + ... + '''''n''''', ubi '''''n''''' est numerus quiquam naturalis. Ergo, primi numeri triangularii sunt ''&nbsp;=&nbsp;1,&nbsp;2,&nbsp;3...'' est
:[[I|1]], [[III|3]], [[VI|6]], [[X|10]], [[XV|15]], [[XXI|21]], [[XXVIII|28]], [[XXXVI|36]], [[XVL|45]], [[LV|55]], ...
 
* [[Numerus quadratus]]
* [[666]] - Numerus triangularis notissimus.
 
==Nota==
<references />
 
== Nexus externi ==
* [http://mathworld.wolfram.com/TriangularNumber.html Mathemundus]
 
[[Categoria:Numeri figuratitriangulares|!]]
 
[[ar:عدد مثلثي]]
23 781

recensiones