Energia ventosa[1][2] sive vis ventorum[3] sive energia pneumatica[4] ex fluxione aeris per molas pneumaticas vel velas adhibitas ad vim electricam vel mechanicam generandam extrahitur. Molae propter vim mechanicam, antliae ventosae propter haustum aquae, velae ad naves propellendas adhibentur. Vis ventosa, contra fomes fossiles, est copiosa, renovabilis, late distributa, et pura, nullas emissiones gasiorum thermocepicorum cum operatur generat, ac paulius territorium ad eius obtinendum requiritur.[5] Toti effectus in circumiectis sunt minus anceps quam effectus fontium energiae non renovabilium.

Stationes energiae ventosae in Xinjiang Sinarum.

Fundi ventosi in multis molis pneumaticis quae coniunguntur ad rete transmissionis virium electricarum consistunt. Ventus in litore est vilis electricitatis fons, de impensa par, vel etiam in multis locis carbone vel fabricis gasii vilior.[6][7][8] Ventus ante litus vento terrestri est stabilior et fortior, et fundi ante litus minus effectum visualem habent, sed impensae constructionis et sustentationis maioris sunt. Parvi fundi ventosi in litore siti aliquam energiam in rete servire, vel electricitatem remotis locis praeter rete praebere possunt.[9]

Caroli Brush mola ventosa anni 1888, ad electricitatem generandam adhibita.
Auctus per orbem terrarum capacitatis instructae.

Vis ventosa quotannis est constans, sed per tempora brevia insigniter variat. Ergo cum aliis fontibus energiae electricae ad certas copias praebendas adhibetur. Proportione energiae ventosae crescente, necessitas rationis distributionis amplificandae et imminuta capacitas productionis usitatae supponendae fieri possunt.[10][11] Rationes energiae administrandae, sicut nimium capacitatis, turbines geographice distributae, fontes pecuniae, satis energiae hydroelectricae, energiam ad regiones proximas exportare et importare, rationes vehiculorum ad rete adhibitae, vel egestas cum ventus intermittitur reducta, difficultates afferunt quae saepe superare possunt.[12] Praeterea, caeli praenuntiatio sinit ut rete electricum promptum factum sit in praedictis productionis variationibus quae fiant.[13][14][15]

Pinacotheca recensere

Nexus interni

Notae recensere

  1.   Fons nominis Latini desideratur (addito fonte, hanc formulam remove)
  2. Vel fortasse energia pneumatica vel vis ventosa vel vis venti.
  3. Ebbe Vilborg. Norstedts svensk-latinska ordbok, Editio secunda anni 2009, sub voce vindkraft
  4. Tuomo Pekkanen & Reijo Pitkäranta, Lexicon hodiernae Latinitatis Finno-Latino-Finnicum, sub voce "tuulivoima". Societas Litterarum Finnicarum, Helsinki, 2006.
  5. Fthenakis et Kim 2009:1465.
  6. "Wind power is cheapest energy, EU analysis finds". the guardian .
  7. Walwyn et Brent 2015.
  8. Gasch et Twele 2013:569.
  9. Gipe 1993.
  10. Holttinen et al. 2006.
  11. Abbess 2009.
  12. Armaroli et Balzani 2011:3217.
  13. Platt 2013.
  14. Platt, Fitch-Roy, et Gardner 2012.
  15. Huang et McElroy 2014.

Bibliographia recensere

 
Usitatae turbinis ventosi partes: 1, fundamenta; 2, nexus ad rete electricum; 3, turris; 4, scala; 5, moderator orientationis; 6, nacella; 7, generator; 8, anemometrum; 9, sufflamen electricum vel mechanicum; 10, capsa apparatuum; 11, palma rotorica; 12, moderator gradus palmarum; 13, axis rotorum.
  • Abbess, Jo. 2009. Wind Energy Variability and Intermittency in the UK.Claverton-energy.com, 28 Augusti.
  • Armaroli, Nicola, et Vincenzo Balzani. 2011. Towards an electricity-powered world. Energy and Environmental Science 4:3193–3222. doi:10.1039/c1ee01249e.
  • Fthenakis, V., et H. C. Kim. 2009. Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews 13(6–7):1465. doi:10.1016/j.rser.2008.09.017.
  • Gasch, Robert, et Jochen Twele, eds. 2012. Wind power plants: Fundamentals, design, construction and operation. Springer. ISBN 978-3-642-22937-4.
  • Gasch, Robert, et Jochen Twele, eds. 2013. Windkraftanlagen: Grundlagen, Entwurf, Planung und Betrieb. Wiesbaden: Springer.
  • Gipe, Paul. 1993. The Wind Industry's Experience with Aesthetic Criticism. Leonardo 26(3):243–248|. JSTOR 1575818. doi:10.2307/1575818.
  • Hau, Erich. 2013. Wind turbines: fundamentals, technologies, application, economics. Springer. ISBN 978-3-642-27150-2.
  • Heier, Siegfried. 2006. Grid integration of wind energy conversion systems. Wiley. ISBN 978-0-470-86899-7.
  • Holttinen, Hannele, et al. 2006. Design and Operation of Power Systems with Large Amounts of Wind Power.] IEA Wind Summary Paper, Global Wind Power Conference, Adelaide Australiae, 18–21 Septembris. PDF.
  • Huang, Junling, et Michael B. McElroy. 2014. Meteorologically defined limits to reduction in the variability of outputs from a coupled wind farm system in the Central US. Renewable Energy 62331–340. doi:10.1016/j.renene.2013.07.022.
  • Jamieson, Peter. 2011. Innovation in Wind Turbine Design. Wiley & Sons. ISBN 978-0-470-69981-2.
  • Platt, Reg. 2013. Wind power delivers too much to ignore. New Scientist, 21 Ianuarii.
  • Platt, Reg, Oscar Fitch-Roy, et Paul Gardner. 2012. Beyond the Bluster why Wind Power is an Effective Technology.] Institute for Public Policy Research. PDF.
  • Schaffarczyk, Alois, ed. 2014. Understanding wind power technology. Wiley & Sons. ISBN 978-1-118-64751-6.
  • Wagner, Hermann-Josef, et Jyotirmay Mathur. 2012. Introduction to wind energy systems: Basics, technology and operation. Springer. ISBN 978-3-642-32975-3.
  • Walwyn, David Richard, et Alan Coli Brent. 2015. Renewable energy gathers steam in South Africa. Renewable and Sustainable Energy Reviews 41:390–401. doi:10.1016/j.rser.2014.08.049.

Nexus externi recensere

  Vicimedia Communia plura habent quae ad vim ventosam spectant.
  • Societas Energiae Ventosae Mundialis, www.wwindea.org
  • Tethys, tethys.pnnl.gov (ratio scientiae interretialis administrandae quae accessum ad data litterasque scientificas de effectibus progressuum venti ante litus civitati venti ante litus praebet)