Hanc paginam intra 3 menses augere oportet. Cuique paginae opus est: lemmate paginae nomine congruente; textu, qui rem definit notabilitatemque eius exprimit; fonte externo certo; nexibus internis ex hac pagina et ad hanc paginam ducentibus.
Plura ... DEENFR
Haec commentatio vicificanda est ut rationibus qualitatis propositis obtemperet.
Quapropter rogamus ut corrigas praecipue introductionem, formam, nexusque extra et intra Vicipaediam.

Chemia quantica est pars chemiae physicaeque theoreticarum tractans structuram ac proprietates moleculārum prŏfĭciscendo ex mechanicā quanticā electronum in campō electricō heterogeneō nucleis atomicis inducto moventium.

Primi chemici quanticiRecensere

erant

  • Fritz London (f)
  • Walter Heitler (f)
  • Hermann Weyl (m,p)
  • Yuri Rumer

ab

sequuntur.

Notiones chemiae quanticaeRecensere

  • functio undarum/undina electronica (multae electronum)
  • densitas electronica et matrix densitatis electronicae
  • coordinates atomici (nucleari)
  • orbitalĭa molecularia (orbital moleculare)
  • Hamiltonianum (operatrum) vel Hamiltoniana (matrix)
  • Fockianum (operatrum) vel Fockiana (matrix)
  • status infimus vel imus
  • mulciplicitas status
  • potential
  • pseudopotential
  • corculum
  • (hyper)superficies energiae potentialis vel superficies energetica

FormalismusRecensere

Aequatio Schrödingeris staticaRecensere

Formaliter statūs cujusquid systematis corpōrum legibus mechanicae quanticae descriptōrum functione undariā   exprĭmĭtur. Hujus functionis argumenta (variabiles) sunt omnium systematis corpōrum coordinatae   et tempus  . Functiones undariae legi Schrödingeri:

 
subordinantur, ubi operator Hamiltonianus   (in chemia quantica) a tempore non pendet. Ponatur  , ubi   quidam numerus realis est, pars prima (laeva) suprae aequationis Schrödingeri erit  , et ambae aequationis partes, multiplicatore exponentiale divisis, dabunt
 

ubi tempus ( ) ab aliis variabilibus separatur. Haec aequatio, pro functione energiāque, aequatio Schrödingeri statica nuncupatur, quae aspectum problematis de vectoribus ac valoribus propriis habet, continet in latere laevō operatorem differentialem Hamiltonianem   (vide infra) ergo per functionem undariam dīvĭdi non posset. Aequatio statica multam solutionem habet quaevis quārum quemdam status quanticum systematis Hamiltoniano   descriptis praebet. Functio autem undaria solō a variabilibus   pendet.

Operatrum Hamiltonianum moleculareRecensere

In circumstantiā non-relativistica Hamiltonianum cujusquid systematis atomārum, id est systematis nucleōrum ac electronum viribus electricis interagentinbus, est:

 
ubi   energia kinetica nuleōrum (suum operatrum):
 
est (hic   numerus nucleōrum est,   massa  -isimi nuclei est); similiter   energia kinetica electronum:
 
est (  est massa electronis). Enim operatora   sunt quodque energiae potentialis ineractionis electrostaticae inter nucleis
 
(hic   onus electricus  -isimi nuclei in unitatibus oneris electronis   est - ergo aliqui numerus naturalis minor quam 118,   vector tri-dimensionalis loci  -isimi nuclei est); energiae potentialis ineractionis electrostaticae inter nucleis et electronibus:
 
(hic   vector loci  -simi electronis est); energiae potentialis interactionis electronum:
 
Notandum interdum est, quod variabiles ad electrona pertinentes  , a quibus functio undaria pendet, non solō tri-dimensionales locuum vectores   sunt, sed autem variabiles electronum spirulares  , quae unum ambōrum valōrum ±½ admissibilium pro fermione spirulitatis vel volubilitatis ½ accipit:  . Debitā autem consideratione adhibitā notare possumus Hamiltonianum a variabilibus spirularibus non pendere. Secundum leges symmetriae solutiones problematis de vectoribus propriis cum tale Hamiltoniano erunt simul vectores (functiones undariae) propriae operatoris totae spirulitates vel multiplitatis spirulare (vide infra).

Approximatio Bornis-Oppenheimeri[1]Recensere

Comparando energias kineticas nucleorum et electronum notamus massam levissimi nuclei - hic hydrogenii ca. 2000-ies gravior esse electrono. Ergo energia kinetica nucleorum   magno minor est quam energia kinetica electronum   ita ut illa neglecta esse possit. Ita familiam Hamiltonianōrum electronicōrum habemus

 
cujus membra copiā locōrum nucleōrum   distinguuntur. Physice, autem, quaeque data configuratio nucleōrum   inducit campum vel potential electricum in quō electrones moventur; nuclei autem, quia ipsōrum energia kinetica zeri aequalis posita est, in statu suo quiescendi persĕvērant. Motūs electronum vicissim functione undariā solo electronum  , eandem functio undaria electronica nōmĭnēmus, exprĭmuntur. Quoniam Hamiltonianum electronicum pro quōque configuratione nucleōrum   potentialem electricam congruentem habet, functio undaria electronica aequationis Schödingeri staticae sătisfăciens aeque ab configuratione   pendet; ergo scribere possumus   ad dependentiam functionis electronicae ab configuratione   denotandum. Enimvero energia tota electronica quid est valor medius exspectatus Hamiltoniani electronici  [2] est autem finctio configurationis   exprimens energiam potentialem, gubernantem motum nucleōrum, si eōrum energia kinetica resumpta sit.

Structura atomiRecensere

Atomi sunt systemata simplicissima ex electronibus ac nucleis compositae quia quaeque atomus solum nucleum habet/continet. Structura atomi modō mechanicae quanticae describeri postest.

Atomus HydrogeniiRecensere

Ponendo nucleum requiscere, aequationem Schrödingeri pro atomō simplicissimā - illā hydrogenii, sed cum onere nuclei   (numerō positivō integrō) generalitis gratiā scribere possumus:

 

quid in unitatibus atomicis trascribi potest

 
Ut eam resolvāmus a coordinatis cartesianis ad coordinatas sphaericas
 
transeāmus, in quibus operator Laplacianus in coordinatis Cartesianis formam:
 
habens, accipit autem formam
 
Quae autem simplicius videtur quia cum debita dexteritate adhibenda functio undaria electronica in campō nucleō onere   inductō in productō partium duārum/factōrum duōrum dissolvi potest:
 
ubi   sunt functiones (vel harmonicae) sphericae et   partes radiales vicissim productō functiones exponentiales ac polynomii Laguerrei   exprimantur:
 

Numerus   est enim quot adsunt nodi vel zeri vel radicis functionis redialis.

Energia   functionis propriae cum numeribus quanticis   solō a numerō principale   pendet:

 
Hic est manifestatio "degenerationis inexpectatae" quae de symmetriā atomi hydrogenii respectu catervae   - illae rotationum quadridimenionalium et non solō tridimensionalium oritur.

Haec sunt solutiones problematis atomi hydrogeniformae (hydrogenoidi) sic est atomi (ionis) cum unō electrone in campo nuclei oneris  .

Atomi cum pluribus electronibusRecensere

Structura molecularum/molecularisRecensere

Principium exclusionis Pauli

Index magnitudinum physicarum

Ŏpŭs latinum de chemia quantica tractansRecensere

"Nova methodus adhibendi approximationem molecularium orbitalium ad plures iuxtapositas unitates" devulgatum a M. Suard, G. Berthier et G. Del Re in Theoretica Chemica Acta 7 (3): 236–244 in lingua Anglica traductum cum commentariis

BibliographiaRecensere

  • Г. Гельман (G. Gel’man; Moscow - 23 Oct 1936). Квантовая Химия [Quantum Chemistry (in Russian)]. ОНТИ, Москва и Ленинград [ONTI, Moscow and Leningrad] (1937), 546 с. [C. 1937 II, 3284] Translated from the German manuscript to Russian by J. Golovin, N. Tunitskij, M. Kovner. Volume 1 of the series “Physics in Monographs”, edited by S. I. Vavilov, I. Ye. Tamm and E. V. Shpolskii.
  • H. Hellmann (Moscow - Mar 1937). Einführung in die Quantenchemie [Introduction to Quantum Chemistry (in German)]. Deuticke, Leipzig and Wien (1937), VIII + 350 p. [C. A. 31:77371, CAN 31:55845 / C. 1937 II, 1518]. Book review: J. Syrkin, Acta Physicochim. U.R.S.S. 8 (1938) 138-140 Book review: O. Schmidt, Z. Elektrochem. Angew. Phys. Chem. 44 (1938) 284 (DOI: 10.1002/bbpc.19380440415) Book review: Clusius, Angew. Chem. 54 (1941) 156 (DOI: 10.1002/ange.19410541109) Reprint (reproduction vested by Alien Property Custodian): H. Hellmann. Einführung in die Quantenchemie. J. W. Edwards, Ann Arbor, Michigan (1944), VIII + 350 p. [C. A. 38:54585, CAN 38:36665]

Nexus externiRecensere


  1. [1]
  2. Hic subscriptum   significat integrationem solo respectu variabilium electronicarum valorem medium calculando.